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ABSTRACT

Motivation: False discovery rate (FDR) is defined as the expected

percentage of false positives among all the claimed positives. In prac-

tice, with the true FDR unknown, an estimated FDR can serve as a

criterion to evaluate the performance of various statistical methods

under the condition that the estimated FDR approximates the true

FDR well, or at least, it does not improperly favor or disfavor any par-

ticularmethod.Permutationmethods havebecomepopular to estimate

FDR in genomic studies. The purpose of this paper is 2-fold. First,

we investigate theoretically and empirically whether the standard

permutation-based FDR estimator is biased, and if so, whether the

bias inappropriately favors or disfavors any method. Second, we pro-

pose a simplemodification of the standard permutation to yield a better

FDR estimator, which can in turn serve as a more fair criterion to

evaluate various statistical methods.

Results:Bothsimulatedand real dataexamplesareused for illustration

and comparison. Three commonly used test statistics, the sample

mean, SAM statistic and Student’s t-statistic, are considered. The

results show that the standard permutation method overestimates

FDR.Theoverestimation is themost severe for the samplemeanstatis-

tic while the least for the t-statistic with the SAM-statistic lying between

the twoextremes,suggesting thatonehas tobecautiouswhenusing the

standard permutation-based FDR estimates to evaluate various statis-

tical methods. In addition, our proposed FDR estimation method is

simple and outperforms the standard method.

Contact: yangxie@biostat.umn.ed

1 INTRODUCTION

DNAmicroarrays are biotechnologies that allow highly parallel and

simultaneous monitoring of the whole genome (Brown and Botstein,

1999). Increasingly, they are used to detect genes expressed dif-

ferentially under different conditions (Spellman et al., 1998). Typi-
cally, two steps are used to declare differentially expressed (DE)

genes: first, one computes a summary or test statistic (e.g. the

sample mean) for each gene and rank the genes in order of their

test statistics; second, one chooses a threshold for the test statistics

and call genes whose statistics are above the threshold ‘significant’

ones (Smyth et al., 2003). False discovery rate (FDR) introduced

by Benjamini and Hochberg (1995) has become a popular way to

formally assess the statistical significance level in microarray data

analysis. FDR is defined as the expected percentage of false

positives among the claimed positives. If we claim that r top ranked
genes are significant DE genes, the expected percentage of equally

expressed (EE) genes among these r genes is the FDR.

FDR can be used for several purposes in statistical analysis. First,

FDR is related to the choice of cut-off for ‘significance’ to control

the error rate in multiple tests. Benjamini and Hochberg (1995)

introduced FDR as an error measure for multiple-hypothesis testing

and proposed a sequential method based on P-values to control

FDR. Storey (2002, 2003) proposed directly estimating FDR for

a fixed rejection region, largely increasing the popularity of FDR in

practice. Later, many authors (Tsai et al., 2003; Pounds and Cheng,
2004; Dalmasso et al., 2005) studied various issues related to FDR

estimation, especially for microarray gene expression data. When

FDR is used to provide an upper bound on the error one can tolerate,

the conservativeness of FDR estimation is not an issue. Actually,

Storey (2002, 2004) showed the conservative property of their FDR

estimator. Second, some recent literature pointed out some connec-

tions between FDR and variable selection (Abramovich et al., 2000;
Ghosh et al., 2004; Devlin et al., 2003; Bunea et al., 2003). Third,
FDR can be used as a criterion to evaluate new statistical methods or

compare different procedures: when claiming the same number of

total positives, the method with the lowest FDR is regarded as the

best. If the truths are known, such as in simulation studies or some

calibration datasets derived from spike-in experiments, the use of

FDR as a criterion to compare different methods is analogous to

using sensitivity and specificity as criteria and is very straightfor-

ward. In typical biological experiments, the truth is unknown and

an estimated FDR instead can be used. Tibshirani and Bair (2003)

used both true and estimated FDR to evaluate the use of eigenarray

in microarray data analysis (http://www-stat.stanford.edu/~tibs/

research.html). Shedden et al. (2005) used estimated FDR to com-

pare seven methods for producing expression summary statistics for

Affymetrix arrays. Other authors (Broberg, 2003; Pan, 2003; Xie

et al., 2004; Wu, 2005) also used estimated FDR to compare dif-

ferent methods in microarray data analysis. It is reasonable and fair

only when the estimated FDR approximates the true FDR well, or

at least, the estimated FDRs for various methods being compared

reflect the same trend of the true FDRs; that is, even if an FDR

estimator is biased, it should not improperly favor or disfavor any

particular statistical method being compared.We emphasize that the

‘fairness’ of FDR estimation is a necessary property when it is used

as a criterion; this paper will focus on this aspect of FDR estimation.

Knowing the distribution of a test statistic under the null hypo-

thesis (called null distribution) is important for FDR estimation.�To whom correspondence should be addressed.
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Some regularized statistics, such as the SAM-statistic (Tusher et al.,
2001; Efron et al., 2001; Pan et al., 2003), perform well for microar-

ray data, but their null distributions are in general unknown; per-

mutation methods have become popular to estimate null

distributions owing to their flexibility and generality. However,

there are some problems when using permutation to estimate

null distributions for microarray data. Pollard and Van der Laan

(2003, 2004) pointed out that when the number of replicates in two

groups is different, the permutation test for two-sample comparison

may not be valid. Other authors (Efron et al., 2001; Pan, 2003; Zhao
and Pan, 2003) have noticed this problem and addressed it by

modifying the test statistic so that the standard permutation can

still estimate the null distribution well. Guo and Pan (2004)

addressed the problem by using weighted permutation scores that

down weight the influence of (predicted) DE genes on estimating

the null distribution. Nevertheless, to our knowledge, there has been

no consideration on whether the bias of the FDR estimator intro-

duced by the standard permutation, if it exists, may depend on the

test statistic being used; if true, it implies that the resulting FDR

estimates cannot be used as a criterion to fairly compare various

statistical methods. The purposes of this paper are (1) to investigate

both theoretically and empirically whether the standard

permutation-based FDR estimation method is biased, and if yes,

whether this bias favors or disfavors any particular statistic; (2) to

propose a new FDR estimator that can serve as a better criterion to

evaluate various statistical methods.

2 METHODS

2.1 Test statistics

For the purpose of clarity, we only consider one-sample comparisons here,

though extensions to two-sample comparisons and other more general set-

tings are straightforward (Tusher et al., 2001; Broet et al., 2004). Suppose

after preprocessing the data, we have observed gene expression levels (e.g.

log ratios of the two channel intensities in cDNA arrays) Xi1, . . . ,Xik for

gene i, i ¼ 1, . . . ,G from k arrays. The goal is to test Hi0: E(Xij) ¼ 0 for

i ¼ 1, . . . ,G. We will consider three commonly used test statistics. The first

one is the SAM-statistic (Tusher et al., 2001), shortened as S-statistic,

Si ¼
�XXi

ðVi þ V0Þ=
ffiffiffi
k

p ‚ ð1Þ

where �XXi ¼
Pk

j¼1 Xij=k and V
2
i ¼

Pk
j¼1 ðXij � �XXiÞ2=ðk � 1Þ are the sample

mean and sample variance of the expression levels for gene i, and V0 is a

constant used to stabilize the denominator of the test statistic. V0 can be

chosen in different ways; one is V0 ¼ median(V1, . . . ,VG).

The second is the mean statistic,Mi ¼ �XXi, which corresponds to the early

practice of simply using fold changes as a significance indicator (e.g. Broet

et al., 2002). The third one is the Student’s t-statistic, ti ¼ �XXi=Vi, which is a

standardized mean statistic.

2.2 A standard method for FDR estimation

For a fixed cut-off value d for a test statistic Zi, we can obtain the true or

realized FDR and its estimate as (Storey and Tibshirani, 2003)

FDRðdÞ ¼ p0FPðdÞ=cTPTPðdÞ‚ dFDRFDRðdÞ ¼ cp0p0
cFPFPðdÞ=cTPTPðdÞ‚ ð2Þ

where p0 is the proportion of EE genes among all genes, and cp0p0 is its

estimator. FP is the number of true false positive genes, i.e., the number

of genes which are EE genes but claimed as DE genes, cFPFP is the estimated

number of false positive genes. cTPTPðdÞ is the total number of genes claimed as

DE genes when the cut-off value is d.

2.2.1 Standard permutation method In order to obtain cFPFP, we need
to estimate the distribution of the test statistic Zi under the null hypothesisHi0

(that gene i is an EE gene). Rather than assuming a parametric distribution

for the null distribution of Zi, a class of non-parametric methods have been

proposed to estimate it empirically (Efron et al., 2001; Tusher et al., 2001;

Xu et al., 2002; Pan et al., 2003). The idea is to permute the data and

calculate the null statistic zi, in the same way as calculating zi, but based
on the permuted data. Under the null hypothesis, the empirical distribution of

the null statistics can be used to approximate the null distribution. In the

current context of the one-sample test, under Hi0, we can permute the data

by randomly keeping or flipping the sign of each of Xi1, . . . ,Xik. When k

is small, we can consider all possible permutations; otherwise, a large

number of random permutations, say B, can be used. Calculating the

same test statistic from the b-th permuted data results in the null statistic

z
ðbÞ
i for b ¼ 1, . . . ,B and i ¼ 1, . . . ,G. For any given d > 0, if we claim any

gene i satisfying |Zi| > d to be significant, we estimate the true positive (TP)

numbers and false positive (FP) numbers as

cTPTPðdÞ ¼ #fi : jZij > dg‚ cFPFPðdÞ ¼ XB
b¼1

#fi : jzijðbÞ > dg=B: ð3Þ

We plug cTPTPðdÞ and cFPFPðdÞ into Equation (2) to calculate FDR(d) anddFDRFDRðdÞ. Other more sophisticated methods, such as SAM (Tusher et al.,
2001) or mixture model (Pan et al., 2003; McLachlan and Peel, 2000) can be

equally applied.

2.2.2 Proportion of EE genes Based on expression (2), we need to

estimate p0, the proportion of EE genes, to calculate FDR. Many authors

have studied the issue based on the distribution of P-values (Storey, 2002;
Allison et al., 2002; Pounds and Morris, 2003; Pounds and Cheng, 2004;

Guan et al., 2004, http://www.biostat.umn.edu./rrs.php; Wu et al., 2004,

http://www.biostat.umn.edu./rrs.php). However, owing to the difficulty of

assigning P-values, the estimation of p0 remains challenging. In fact, if the

standard permutation method is used to estimate P-values, the same argu-

ment as to be discussed next implies that the P-values will be overestimated,

leading to overestimation of p0 (Guo and Pan, 2004). Other non-parametric

approaches can only estimate an upper bound of p0 (Dalmasso et al., 2005).

Because estimation of p0 is itself an unsettled research question, and more

relevantly here, is not the focus of our current work, we bypass it in simu-

lations: for simulated data, we use truep0 in expression (2), which represents

the ideal (but not practical) performance of the standard method. For real

data, however, we use an estimated p0.

2.2.3 Problem with the standard permutation: statistical theory
The idea of using null statistics of all genes to construct the null distribution

is based on the assumption that the null statistics of all genes are identically

distributed. However, as shown next, the null statistic of a DE gene does not

have the same distribution as that of EE genes. Hence, the empirical dis-

tribution of the null statistics of all genes may not approximate the true null

distribution well.

Suppose for gene i, its observed gene expression level Xij on array j has

mean mi and variance s2
i ; mi ¼ 0 if it is an EE gene, and mi 6¼ 0 otherwise.

Define Bernoulli random variable Yij as: Yij ¼ 1 (corresponding to keeping

the sign of Xij) with probability p ¼ 0.5 and Yij ¼ �1 (corresponding to

flipping the sign of Xij) with probability 1� p ¼ 0.5, and assume that Yij and
Xij are independent. Then the random variable Wij ¼ Yij Xij represents the

permuted gene expression level in the standard permutation method. It is

simple to verify that E(Yij) ¼ 2p � 1 ¼ 0, and we have

EðWijÞ ¼ EðYijEðXijÞÞ ¼ ð2p � 1Þmi ¼ 0

VarðWijÞ ¼ EðVarðYijXijjYijÞÞ þ VarðEðYijXijjYijÞÞ
¼ EðY2

ijs
2
i Þ þ VarðYijmiÞ

¼ s2
i þ m2

i :
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If gene i is an EE gene, mi ¼ 0, and thus VarðWijÞ ¼ s2
i ¼ VarðXijÞ;

otherwise,mi 6¼ 0, and Var(Wij) >Var(Xij). The consequence is that permuted

expression levels of DE genes inflate the variation of the distribution of

all null statistics, as pointed out by previous authors (e.g. Pan, 2003).

Although the heuristic argument is intuitively reasonable, it may not be

equally transparent to everyone. Below we provide a more detailed, and

hence more convincing discussion on this for each test statistic.

To facilitate discussion, we suppose that gene i is a DE gene throughout

this section, and rewrite Xij ¼ X�
ij þ mi; X

�
ij can be regarded as the expression

level of gene i if gene i were equally expressed.

The mean statistic The null statistic for DE gene i is

mi ¼
Xk
j¼1

Wij

k
¼

Xk
j¼1

YijX
�
ij

k
þ mi

Xk
j¼1

Yij

k
‚

while if gene i were an EE gene, its null statistic would be

m�
i ¼

Xk
j¼1

YijX
�
ij

k
:

Becausemi 6¼ 0, it can be shown that VarðmiÞ ¼ Varðm�
i Þ þ m2

i =k. Therefore,

the distribution of the null statistic of a DE gene has heavier tails than that

of an EE gene. In other words, because of the presence of both DE and EE

genes, the distribution of the null statistics of all genes, as adopted in the

standard permutation method, has heavier tails than that of only EE genes.

Note that the difference between Var(mi) and Varðm�
i Þ depends on both mi

and k, the difference will get smaller when k increases.

The t-statistic The null statistic for DE gene i is

ti ¼
Pk

j¼1 YijX
�
ij=k þ mi

Pk
j¼1 Yij=k

VðYijX
�
ij þ miYijÞ=

ffiffiffi
k

p :

In contrast, if gene i were an EE gene, its null statistic would be

t�i ¼
Pk

j¼1 YijX
�
ij=k

VðYijX
�
ijÞ=

ffiffiffi
k

p ‚

where V(Rij) is the sample standard deviation of {Ri1, . . . ,Rik}. Although,

as shown earlier, the variance of the numerator of ti is larger than that of t�i ,
the variance of the denominator of timay be also larger than that of t�i . Hence,
we cannot simply conclude that VarðtiÞ > Varðt�i Þ. Although it seems non-

trivial to establish analytically, we use simulation to compare the variances

of ti, t
�
i , mi and m�

i under the assumption that Xij has a normal distribution.

We simulated X�
ij from a standard normal distribution (i.e. with mean 0

and variance 1), and Yij from a Bernoulli distribution specified earlier, with

i ¼ 1, . . . , 100 000 and j ¼ 1, . . . , k. With mi ¼ 2 and mi ¼ 0.5, we calculated

eachmi,m
�
i , ti and t

�
i . Table 1 gives the sample variances of the four statistics

with k ¼ 3, . . . , 6. It can be seen that mi has a larger variance than m�
i s; and

the difference between the two is larger for a smaller k. In most cases, ti has a

larger variance than t�i s, but there is an exception whenmi¼ 0.5 and k¼ 3. So

we cannot get a simple conclusion that variance of ti is always bigger than
variance of t�i , which is different from the situation of mean statistic. Of

course, by the central limit theorem, the asymptotic distribution of zi is the

same as that of z�i as k tends to infinity for both the mean statistic and

t-statistic. To compare the impact of DE genes on different test statistics,

we calculated the relative difference for the mean statistic, ½varðmiÞ �
varðm�

i Þ�=varðm�
i Þ and similarly that for the t-statistic. Table 1 shows that

the relative difference of mean statistic is larger than that of t-statistic, so
the discrepancy between the distribution of mi and m

�
i is larger than that of ti

and t�i .
The SAM statistic As a modified t-statistic with a constant V0 being

added to the denominator, the behavior of the SAM statistic lies between

the mean statistic and the t-statistic: if V0 ¼ 0, the SAM statistic is the

same as the t-statistic; as V0 tends to infinity, the SAM statistic reduces

to the mean statistic (Efron et al., 2001). Therefore, we expect that the

discrepancy between the distribution of the null statistic of EE genes and

that of DE genes lies between that for the mean statistic and that for the

t-statistic.

In summary, by permuting expression levels of all the genes, both EE

and DE genes, the standard permutation tends to overestimate the tails of

the null distribution, leading to conservative inference, e.g. overestimating

P-values, FP and FDR.

2.3 A new method for FDR estimation

We propose a new permutation based FDR estimation method. If we know

which genes are EE genes, we only use these EE genes alone to construct the

null distribution without using DE genes and thus avoid the trouble of

the standard permutation method. In practice, we never know for sure

which genes are EE genes, whose identification may be in fact the purpose

of the whole analysis. However, we can use the predicted EE genes to do the

permutation and construct the null distribution. First, we predict DE genes

based on a summary statistic, then remove the predicted DE genes, and use

the remaining genes in permutation. To do so, we have to address first which

statistic to use to predict DE genes. A simple and natural way is to use the

same statistic as the test statistic to predict DE genes. But if the performance

of the test statistic itself is not good, this method may not work well. So

an alternative way is to use a statistic that in general has a good perfor-

mance; the SAM statistic seems to be a reasonable candidate (Tusher, 2001;

Lonnstedt and Speed, 2002; Qin and Kerr, 2003; Xie et al., 2004). Based on

our limited experience, we decided to use the S-statistic.

Another question is how many genes should be removed. Because pre-

dicting the number of DE genes is quite challenging, we propose removing

the same number of genes as that of claimed significant DE genes. For

example, if we identify top 50 genes as significant DE genes, we remove

50 most significant genes based on the S-statistic from the gene list, and then

use the remaining genes to do the permutation, construct the null distribution

and, therefore, estimate the FP and FDR. More specifically, the new FDR

estimation procedure works as follows. Suppose zi is our test statistic. For
any given d > 0, we claim any gene i satisfying |Zi| > d to be significant, and

we estimate TP as

cTPTPðdÞ ¼ #fi : jZij > dg:

We define a set of non-significant genes D(d ) as D(d ) ¼ {i : |Si| � d0},
where d0 is chosen so that the number of genes not in set D(d) is the same

Table 1. Variances of the null mean statistics for a DE gene (mi) and a

corresponding EE gene (m�
i ), variances of the null t-statistics for a DE

gene (ti) and a corresponding EE gene (t�i ) with various numbers of replicates

k and true difference of the means between an EE gene and a DE gene (mi)

mi k 3 4 5 6

2 Var(mi) 1.67 1.26 1.00 0.84

Varðm�
i Þ 0.33 0.25 0.20 0.17

Relative difference 4.00 4.02 3.98 4.07

Var(ti) 32.97 7.19 3.66 2.49

Varðt�i Þ 12.4 2.93 1.98 1.64

Relative difference 1.66 1.42 0.84 0.52

0.5 Var(mi) 0.42 0.31 0.25 0.21

Varðm�
i Þ 0.33 0.25 0.20 0.17

Relative difference 0.25 0.26 0.25 0.27

Var(ti) 9.63 2.98 1.99 1.68

Varðt�i Þ 12.40 2.93 1.98 1.64

Relative difference –0.22 0.01 0.01 0.02

Relative difference for the mean statistic is defined as ½VarðmiÞ � Varðm�
i Þ�=Varðm�

i Þ,
and that for the t-statistic is ½VarðtiÞ � Varðt�i Þ�=Varðt�i Þ.

Y.Xie et al.
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as cTPTPðdÞ. As before, we permute observed expression levels B times; for

each permuted dataset b, we calculate the null statistic z
ðbÞ
i . Then, we use only

the genes in D(d) to estimate FP:

cFPFPðdÞ ¼ XB
b¼1

#fi 2 DðdÞ : jzijðbÞ > dg=B:

Finally, FDR is estimated as dFDRFDRðdÞ ¼ cFPFPðdÞ=cTPTPðdÞ. Note that we do not
use p0 (or its estimate) in dFDRFDRðdÞ because we only use the genes in D(d) to
count false positives, which is equivalent to estimating p0 as 1� cTPTPðdÞ=G.

3 RESULTS

3.1 Simulated data

To evaluate the performance of the standard FDR estimation

method for different test statistics and whether our proposed

FDR estimation method works, we used different simulation set-

ups. For each simulation set-up, we simulated data 50 times, and

used the mean FDR from these 50 replicates for comparisons.

Because the variances of the results from these simulations were

quite small, the Monte Carlo errors were negligible. In simulation

set-up 1, a simulated dataset had G ¼ 4000 genes, among which

G1¼ 400 were DE genes and the other 3600 were EE genes on k¼ 5

arrays, so the proportion of EE genes was p0 ¼ 0.9. For EE gene i,
its observed intensity log-ratios followed a normal distribution:

Xij � N(0, 4) for j ¼ 1, . . . , 5; for DE gene i, mi � N(0, 16) and
Xij�N(mi, 4) for j¼ 1, . . . , 5. Simulation set-up 2 was similar to set-

up 1, but the standard deviation of gene i’s expression level was not
a constant; instead, it followed a continuous uniform distribution

between 0 and 5. In simulation set-up 3, each simulated dataset was

generated to mimic a real study (Tani et al., 2002), the purpose of
which was to comprehensively define a family of genes whose

transcription depends on the activity of leucine-responsive regula-

tory protein, or Lrp, in Escherichia coli. There were 4281 genes,

6 replicates and 800 DE genes randomly chosen (corresponding to

p0¼ 0.81). For DE genes, the sample mean of each gene in real data

was used as the true mean to generate simulated data; for EE genes,

their means were all set at 0. For each gene, the sample variance was

used as the true variance, and the expression level of each gene

followed a normal distribution. Simulation set-up 4 was the same as

set-up 3 except that the number of DE genes was increased to 2000

(leading to p0 ¼ 0.53); the purpose was to investigate how a small

p0 influences FDR estimation. Simulation set-up 5 was similar to

set-up 1 but the number of DE genes was decreased to 200 (p0 ¼
0.95). We applied the standard and new permutation methods to

estimate FDRs using the mean (M), t and S test statistics. As men-

tioned earlier, when estimating FDR in the standard permutation

method, we used the true p0, an ideal but not practical case pro-

viding the best possible performance for the method; in contrast, we

do not use the true p0 for our new method.

Figure 1 compares the performance of the standard permutation

and our new method when using the mean statistic as the test

statistic under simulation set-ups 1–4. It shows that the standard

permutation method largely over-estimates FDRs and the new

method performs much better with its FDR estimates closer to

the true ones. In simulation 4, after removing the DE genes pre-

dicted by the S-statistic, the FDR estimates based on our new

method, though much better than that of the standard permutation,

are still higher than the true ones. The reason is that there are a large

number of DE genes (2000) in this set-up; because only relatively

few DE genes are removed, the presence of many other remaining

DE genes still affects the null distribution estimation.

Figures 2 and 3 present the results for the S-statistic and t-statistic,
respectively. Again the standard permutation overestimates FDR. In

general, the new method works better than the standard permuta-

tion, especially for the S-statistic. For the t-statistic, the new method

gives larger biases than that of the standard method for simulation

set-ups 3 and 4. The reason is that the standard method is imple-

mented here using the truep0 to estimate FDR, which is not possible

in practice; in contrast, the new method always overestimates p0

with p̂p0 ¼ 1� cTPTP=G when the number of removed genes (cTPTP) is
fewer than the true number of DE genes, which is the case for the

two plots in Figure 3. Nevertheless, the new method still works

better than the standard permutation when a small number of genes

are claimed to be significant, which often is of practical interest.

More importantly, by comparing Figures 1, 2 and 3 we can see

why estimated FDRs based on the standard permutation method

cannot be used as a fair criterion to evaluate the performance of the

test statistics. In simulation set-up 1, the mean statistic gives the

lowest true FDR while the t-statistic gives the highest; we can draw
the same conclusion when using the proposed new FDR estimates,

however, we would incorrectly conclude that the mean statistic

gives the highest FDR if the standard permutation method is

used. In simulation set-up 2, the S-statistic and the t-statistic give

lower true FDRs than the mean statistic; the standard FDR estima-

tors give the same conclusion, but the degree of bias for the mean

statistic is much higher than that for the other two statistics. Simu-

lations 3 and 4 give the similar conclusion that the bias of the

standard FDR estimator depends on the test statistic, favoring the

t-statistic and the S-statistic. Our new proposed FDR estimator

provide a more fair criterion to compare the various statistics.

The choices on which and how many genes should be removed in

the new FDR estimation method will affect its performance. As

shown for simulation set-up 4, removing far fewer genes than the

true number of DE genes may still result in overestimating FDR,

though often to a lesser degree than that of the standard permutation.

As an extreme in the other direction, we consider simulation set-up

5 (with p0 ¼ 0.95). Here we consider removing top 50 genes, 100

genes, 200 genes and 400 genes, respectively. To facilitate com-

parisons, in addition, we include results based on permuting only

true EE genes, which is ideal but not practical, providing the best

scenario. As shown in Table 2 as expected, permuting only true EE

genes leads to excellent estimates of FDR while permuting all genes

overestimates FDR, especially for the mean statistic. The more

genes we remove, the lower the FDR we estimate. If we remove

200 genes, the same number as the true number of DE genes, the

FDR estimates are very close to the true FDRs. As expected, if we

remove 400 genes, the FDRs are slightly underestimated. Ideally, if

the estimated p0 is close to the truth, we can remove the same

number of estimated DE genes. But as discussed earlier, most cur-

rent methods overestimate p0. For example, we used Storey and

Tibshirani’s (2003) method to estimate p0 in this simulation and

obtained p̂p0 ¼ 0:975, which corresponds to about 100 DE genes;

removing only 100 predicted DE genes still results in various biases

of the FDR estimates in the standard permutation for the three

statistics. On the other hand, we can also see from Table 2 that

our proposed simple procedure (removing the same number of

genes as TP genes) can work well; see the final section for a further

discussion on this issue.
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As suggested by a referee, we also compared the performance

of the method that downweights the influence of DE genes (Guo

and Pan, 2004). From Table 2, we can see that the weighted

method improves results over the standard permutation with less

biased FDR estimates, especially for the S- and t-statistics, but may

give a slightly larger bias of the FDR estimate for the mean statistic,

thus slightly disfavoring the mean statistic. Larger studies are

needed to draw a firm conclusion.

3.2 Chromosomal evolution data

A cDNA microarray experiment with three replications was used to

compare the standard and the new FDR estimation methods. The

purpose of the experiment was to identify duplications and deletions

in genomic DNA (gDNA) of E.coli; more details can be found in

Zhong et al. (2004).

We used Storey and Tibshirani’s (2003) method to estimate p0

and obtained p̂p0 ¼ 1:002; hence, we decided to use cp0p0 ¼ 1 for the

standard method. Table 3 shows that the S-statistic performs best

compared to the mean and t-statistics in terms of giving the lowest

false positive numbers based on both the standard and new methods;

though the standard permutation method gives higher false positive

numbers than that of the new method, and these differences are

especially large for the mean statistic, these observations are in

agreement with that of the simulations.

In this experiment, 63 genes have been confirmed to be duplica-

tions or deletion genes (i.e. true positives) by real-time PCR and

Southern blots. Based on these 63 genes, we can calculate an upper

bound for the true false positive number as the number of genes

identified by the test statistic but not in the list of 63 true positive

genes. Because the follow-up experiment mainly targeted the genes
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Fig. 1. FDR curves when using the sample mean as the test statistic under different simulation set-ups. Simulation 1, Xij� N(mi, 4), the proportion of EE genes

is p0 ¼ 0.9; Simulation 2, Xij � N(mi, si) and si follows a uniform distribution, p0 ¼ 0.9; Simulation 3, mimicking the Lrp data, p0 ¼ 0.81; Simulation 4,

mimicking the Lrp data, p0 ¼ 0.53.
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with large absolute values of the mean statistics, the upper bound of

the true false positive number should be most accurate for the mean

statistic. Table 3 shows that if we use the mean statistic to identify

100 significant genes, there should be at most 39 false positive

genes; the standard permutation estimates 84 genes as false posi-

tives out of 100 significant ones, while the new method gives 38.

Hence, the standard permutation largely overestimates the FDR and

the new method provides a better estimator. On the other hand,

because many top genes ranked by the S-statistic or the t-statistic
were not examined in follow-up, the upper bounds of the true false

positive numbers for them are likely to be too loose, as evidenced by

that the estimated FPs are all well under the bounds using either the

standard or the new method.

4 DISCUSSION

This paper investigates the performance of permutation based FDR

estimators for the mean, S- and t-statistics. As predicted by our

theoretical analysis, our simulation study has confirmed that the

standard permutation method overestimates FDR, even when we

assume that the proportion of true DE genes is known. The degree of

overestimation is especially serious when using the sample mean

as the test statistic, less so for the S-statistic, and the least for

the t-statistic. Because the magnitude of the bias depends on the

test statistic being used, we should be cautious when using estim-

ated FDR as a criterion to evaluate the performance of various

test statistics. Our proposed method can estimate the true FDR
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Permutation-based false discovery rate estimation

4285



better, hence providing a better means to evaluate various test

statistics.

The basic idea underlying the new method is quite simple:

because it is DE genes that cause the problem, removing the DE

genes should improve the performance of the resulting FDR esti-

mator. Our simulation and real data example show that the FDR

estimation can be improved by permuting only predicted EE genes.

We demonstrate that using the S-statistic to predict EE genes in the

new method works well, though any other methods for detecting DE

genes (Lonnstedt and Speed, 2002; Efron et al., 2001; Kendziorski
et al., 2002; Newton and Kendziorski, 2003) that have proved useful
can be also used.

An important parameter in our proposed method is the number of

genes to be removed. In the current work, we have proposed remov-

ing the same number of genes as the number of identified significant

DE genes. This method is simple and performs well in most cases.

A justification is that FDR estimation depends more critically on the

tails of the null distribution; Table 2 shows that removing a small

number of the extreme genes effectively eliminates most of the bias.

Nevertheless, if the number of DE genes is high, the current pro-

posal may still overestimate FDR, although the degree of the bias is

much less than that of the standard permutation method. On the

other hand, when the true number of DE genes is smaller than that of

claimed significant DE genes, the current proposal may underesti-

mate FDR, which however is not really a serious issue. First, the

biologists generally have a rough idea about the proportion of DE

genes for the experiments. It is rare for one to try to identify more

significant genes than the true ones because, with a smaller number

of replicates and thus quite limited statistical power, the resulting

FDR should be too high for the list of the identified genes to be
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useful. (Note that, as discussed earlier, if the number of replicates is

high, the overestimation problem with the standard permutation

method will largely diminish, and thus it is no longer compelling

to correct the standard permutation.) Second, if the biologists

have no idea about the number of DE genes, and to be conservative,

we recommend the following procedure: first estimating p0, and

then only using the current proposal if the proportion of claimed

significant genes is smaller than 1� p̂p0, and using the standard

permutation method otherwise. Because, using the same argument

as before (and based on our experience with simulated data), the

permutation method (with all genes) will tend to overestimate p0

(see also Wu et al., 2004), this conservative approach is in general

still no worse than the standard permutation method.
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